Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes

نویسندگان

  • Didier Pinchon
  • Philip E. Hoggan
چکیده

The angular factors of atomic orbitals are real spherical harmonics. This is independent of the choice of basis function. In the course of molecular electronic structure calculations, numerous rotations of real spherical harmonics are required in a suitably defined space-fixed co-ordinate system. The origin and axes are space-fixed and rotation matrices defined on a basis of spherical harmonics. In this work, a highly compact expression and efficient evaluation of the rotation matrices are given for a real spherical harmonic basis. Relations to Gaunt coefficients are shown explicitly as are recurrence formulae for rotation matrices. This leads to extremely rapid and precise rotation algorithms. The Wigner rotation matrices which are still often used in orbital rotations are shown to be completely surpassed by this approach. The present work is related to a method described by Kautz in the field of image processing but significant improvements have been made, especially in the study of structure and storage of the rotation matrices. After complete testing using computer algebra, a numerical program was written in C. Numerical tests are cited in the closing sections of this work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid and Stable Determination of Rotation Matrices between Spherical Harmonics by Direct Recursion

Recurrence relations are derived for constructing rotation matrices between complex spherical harmonics directly as polynomials of the elements of the generating3×3 rotation matrix, bypassing the intermediary of any parameters such as Euler angles. The connection to the rotation matrices for real spherical harmonics is made explicit. The recurrence formulas furnish a simple, efficient, and nume...

متن کامل

Evaluation of the rotation matrices in the basis of real spherical harmonics

Rotation matrices (or Wigner D functions) are the matrix representations of the rotation operators in the basis of spherical harmonics. They are the key entities in the generation of symmetry-adapted functions by means of projection operators. Although their expression in terms of ordinary (complex) spherical harmonics and Euler rotation angles is well known, an alternative representation using...

متن کامل

Numerical generation of hyperspherical harmonics for tetra-atomic systems.

A numerical generation method of hyperspherical harmonics for tetra-atomic systems, in terms of row-orthonormal hyperspherical coordinates-a hyper-radius and eight angles-is presented. The nine-dimensional coordinate space is split into three three-dimensional spaces, the physical rotation, kinematic rotation, and kinematic invariant spaces. The eight-angle principal-axes-of-inertia hyperspheri...

متن کامل

Löwdin Population Analysis With and Without Rotational Invariance

Theoretical arguments and calculations are presented concerning atomic orbital-based population analyses, as well as the way they are affected by rigid rotation of the molecule. It was recently shown that the Löwdin distribution of atomic charges (atomic populations computed in a Löwdin-orthogonalized basis) is, in general, not rotationally invariant unless an initial atom-centered basis of pur...

متن کامل

Interference in a spherical phase space and asymptotic behavior of the rotation matrices.

We extend the interference in the phase-space algorithm of Wheeler and Schleich [W.P. Schleich and J.A. Wheeler, Nature 326, 574 (1987)] to the case of a compact, spherical topology in order to discuss the large j limits of the angular momentum marginal probability distributions. These distributions are given in terms of the standard rotation matrices. It is shown that the asymptotic distributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006